Products of basic doubly stochastic matrices over a field
نویسندگان
چکیده
منابع مشابه
Doubly stochastic matrices of trees
In this paper, we obtain sharp upper and lower bounds for the smallest entries of doubly stochastic matrices of trees and characterize all extreme graphs which attain the bounds. We also present a counterexample to Merris’ conjecture on relations between the smallest entry of the doubly stochastic matrix and the algebraic connectivity of a graph in [R. Merris, Doubly stochastic graph matrices I...
متن کاملBasic Properties of the Rank of Matrices over a Field
In this paper I present selected properties of triangular matrices and basic properties of the rank of matrices over a field. I define a submatrix as a matrix formed by selecting certain rows and columns from a bigger matrix. That is in my considerations, as an array, it is cut down to those entries constrained by row and column. Then I introduce the concept of the rank of a m× n matrix A by th...
متن کاملBasic Properties of Determinants of Square Matrices over a Field
where p is any fixed permutation of a set with n elements. I prove that the sign of a product of two permutations is the same as the product of their signs and show the relation between signs and parity of permutations. Then I consider the determinant of a linear combination of lines, the determinant of a matrix with permutated lines and the determinant of a matrix with a repeated line. Finally...
متن کاملRandom doubly stochastic tridiagonal matrices
Let Tn be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally in probability problems as birth and death chains with a uniform stationary distribution. We study ‘typical’ matrices T ∈ Tn chosen uniformly at random in the set Tn. A simple algorithm is presented to allow direct sampling from the uniform distribution on Tn. Using this algorithm, the elements abo...
متن کاملA note on doubly stochastic graph matrices
A sharp lower bound for the smallest entries, among those corresponding to edges, of doubly stochastic matrices of trees is obtained, and the trees that attain this bound are characterized. This result is used to provide a negative answer to Merris’ question in [R. Merris, Doubly stochastic graph matrices II, Linear Multilin. Algebra 45 (1998) 275–285]. © 2005 Elsevier Inc. All rights reserved....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1976
ISSN: 0024-3795
DOI: 10.1016/0024-3795(76)90011-2